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This paper examines whether large language model (LLM) capabilities can continue to advance
without additional compute by analyzing the development and role of algorithms used in state-of-
the-art LLMs. Motivated by regulatory efforts that have largely focused on restricting access to
high-performance hardware, we ask: Can LLMs progress in a compute-constrained environment,
and how do algorithmic innovations perform under such conditions?

To address these questions, we introduce a novel classification framework that distinguishes be-
tween compute-dependent innovations—which yield disproportionate benefits at high compute lev-
els (e.g., the Transformer architecture and mixture-of-experts models) and compute-independent
innovations, which improve efficiency across all compute scales (e.g., rotary positional encoding,
FlashAttention, or layer normalization). We quantify these contributions using a metric called
compute-equivalent gain (CEG), which estimates the additional compute that would be required to
achieve similar improvements without these algorithmic advancements.

To validate this framework, we conduct small-scale training experiments with a scaled-down
GPT-2 model. Our results confirm that compute-independent advancements yield meaningful per-
formance gains even in resource-constrained settings, with a CEG of up to 3.5× over a baseline
model. By contrast, compute-dependent advancements provided little benefit or even degraded
performance at the small scale, reinforcing the importance of compute availability for certain algo-
rithmic gains.

These findings indicate that while restrictions on hardware may slow LLM progress, they cannot
prevent all gains driven by algorithmic advancements. From a policy perspective, this challenges
the assumption that limiting access to compute is a sufficient control mechanism for AI capabilities.
Instead, effective governance should also consider monitoring and shaping algorithmic research. Ad-
ditionally, our framework offers a practical tool for researchers to predict the scalability of algorithmic
improvements and optimize experimental design. By clarifying the distinct roles of hardware scaling
and algorithmic progress, this study provides insights for AI forecasting, investment strategies, and
regulatory approaches in a landscape where progress is increasingly driven by both hardware and
algorithms.

I. INTRODUCTION & MOTIVATION

The rapid advancement of Large Language Models (LLMs) has been driven by a few key factors, two of which
are increases in computational resources and algorithmic improvements1–4. However, the relative interaction
between these two drivers remain an open question with significant implications for AI progress, regulation,
and forecasting. If new algorithmic advancements require commensurate computational resources, then
restricting access to advanced hardware—through export controls or regulatory measures—could meaning-
fully slow AI development. Conversely, if algorithmic innovations can drive substantial progress even in a
compute-limited environment, such restrictions may be far less effective than anticipated.

AI regulation has largely focused on hardware controls, particularly through export restrictions on cutting-
edge chips.5,6 Given that many recent LLM advancements have relied primarily on increasing scale through
model size (parameter count), dataset size, and, more recently, inference time,7 these restrictions prompt
two fundamental questions. First, if computational power were frozen at current levels, could we still expect
LLMs to continue improving? This speaks to the potential for progress even in a world where access to greater
compute is fully restricted. Second, how do algorithmic or architectural advancements transfer between low
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compute and high compute? This question is more practical; rather than assuming perfect enforcement,
it considers whether export controls could successfully prevent certain innovations from being leveraged at
scale.

Existing research2,3,8–10 has attempted to estimate the role of algorithmic progress through neural scaling
laws, which describe how performance (as measured by the loss on a validation dataset) improves with
increasing both the number of parameters and dataset size (“compute”). However, these approaches suffer
from two major limitations: scaling laws do not directly measure the contributions of specific algorithmic
innovations, nor do they account for possible differences in the efficiency of algorithmic advancements at
different compute scales.

To address this, we introduce a new framework that distinguishes between “compute-dependent” and
“compute-independent” algorithmic advances (Section II). Compute-dependent advancements yield bene-
fits primarily at high compute levels, whereas compute-independent advancements enhance efficiency across
all scales. To quantify the extent to which algorithmic advancements depend on compute, we estimate
the compute-equivalent gain (CEG)2 for each algorithm studied. Through a case study-driven approach,
we identify and analyze major algorithmic innovations from the past decade—classifying each as compute-
independent/dependent and estimating their CEG. In turn, we validate our framework by performing train-
ing experiments with a scaled-down GPT-2 model, varying the use of several chosen algorithms and directly
estimating their CEG (Section III B).

Our findings suggest that while many of the most salient innovations in language modeling—such as the
transformer architecture and mixture-of-experts models—have been compute-dependent, a large portion of
LLM gains can be attributed to critical compute-independent advancements, such as rotary positional embed-
ding (RoPE), FlashAttention, and Layer Normalization. Importantly, the latter innovations improve model
efficiency even in resource-constrained settings, suggesting that further discovery of compute-independent
algorithms could yield AI progress even in a compute-limited environment. The experimental results further
confirm that compute-independent techniques provide measurable performance gains in small-scale LLMs,
while compute-dependent methods offer little benefit or even degrade performance at the same compute
levels.

Beyond geopolitical concerns, these questions are also central to AI regulation as a whole, particularly in
ensuring safe and aligned AI development. If major capability gains can arise from algorithmic improvements
alone, then effective governance may require more than just controlling hardware: it may also necessitate
monitoring and shaping the trajectory of algorithmic research, a far more challenging task. Many cur-
rent regulatory frameworks assume compute is the primary bottleneck11 and focus on restricting access to
large-scale infrastructure. However, if algorithmic innovations continue to drive progress independently of
hardware, then safety strategies and governance approaches will need to evolve accordingly.

Our findings also have implications for AI forecasting and investment. Many companies and institutions
have placed large bets on hardware, assuming that scaling compute will remain the primary driver of future
breakthroughs. However, if algorithmic efficiency gains remain significant, AI advancements may occur
sooner than expected, even under compute constraints. Understanding whether AI progress is fundamentally
hardware-driven or whether algorithmic ingenuity alone can sustain rapid improvements will be crucial for
predicting AI’s trajectory.

By addressing these questions, this paper provides a clearer framework for policymakers, researchers, and
industry leaders. Our findings could inform more robust AI governance strategies—ones that remain relevant
not just in today’s landscape of export controls and compute thresholds, but in a future where AI progress
may be increasingly driven by factors beyond computational resources.
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II. DISSECTING ALGORITHMIC PROGRESS: COMPUTE'S ROLE IN ALGORITHMIC
EVOLUTION

To explore the effectiveness of hardware controls, we consider a hypothetical: what if AI research tried
to progress without any more hardware? Suppose datacenter construction halted, no new GPUs or TPUs
were manufactured, and researchers had to work with current infrastructure—how much further could AI
improve? At first glance, it is tempting to assume that progress would slow dramatically, but there is also
reason to believe algorithmic advancements could drive significant gains independent of compute increases.
Even with fixed hardware, there are still untapped opportunities. Better prompts, more effective evaluation
strategies, and optimized architectures could let us achieve more with the same resources.

To quantify this, we look at past algorithmic advancements: how much recent AI progress is due to better
algorithms rather than mere compute scaling compute? To this end we use the “compute-equivalent gain”
framework, measuring AI advancements that came from algorithmic improvements alone. Individual models,
such as DeepSeek-V3, provide concrete data, demonstrating that algorithmic advancements alone can yield
substantial improvements, even in a world with frozen compute. This has real-world policy implications.
Export controls, for example, are designed to slow AI progress by restricting hardware, but if software
improvements continue to drive significant capability gains, how much of a brake can hardware restriction
really impose? In this section we explore these questions, aiming to untangle how far AI can go from
algorithmic progress alone and whether hardware can truly set limits on LLM advancements.

A. DeepSeek-V3: A Case Study

As a preliminary case study, we look at DeepSeek-V3, a model that notably required only 2.788M H800
GPU hours for its full training.12 In comparison, a similar state-of-the-art model, LLaMa 3.1-405B-Instruct,
achieved comparable or worse performance with 30.84M GPU hours13 on superior H100 GPUs.14 This clearly
suggests that, if compute advances were to suddenly stop, algorithmic improvements in model training could
still increase capabilities. Perhaps more pertinently, DeepSeek-V3 also demonstrates that export controls
cannot completely prevent the targeted countries from developing their own near-frontier AI models.6,15 Of
course, some have cast doubt on whether DeepSeek’s training numbers are reliable. Ultimately, however,
even DeepSeek CEO stated that “Money has never been the problem for us; bans on shipments of advanced
chips are the problem.”16 Either way, the algorithmic advances used in DeepSeek-V3 including multi-headed
latent attention, mixture-of-experts architecture, and mixed-precision training12,17,18) no doubt contributed
to its superior performance. DeepSeek’s performance, then, suggests that even the most effective hardware
controls cannot completely halt the improvement of LLMs in areas export controls affect.

B. Quantifying Compute-Equivalent Gain

As previously discussed, both increases in computational resources and hardware capabilities along with
algorithmic breakthroughs have enabled the massive increases in LLM capabilities. Prior to the introduction
of GPUs in deep learning in the early 2010s, compute levels used in AI increased more slowly than in the
last decade or so3. Early hardware innovations—notably, NVIDIA’s introduction of CUDA in 2006—made
it feasible to do general-purpose computing on GPUs, which laid the foundation for modern deep learning’s
focus on training larger models on larger datasets. Throughout the 2010s, specialized AI hardware, such as
Google’s Tensor Processing Units (TPUs) (2013–2016), and distributed training frameworks like Microsofts
Project Adam (2015) further expanded computational capabilities. By 2018, the emergence of large-scale
distributed deep learning, supported by hardware like NVIDIA’s Tesla V100 and TPU v3 pods, enabled the
training of increasingly complex models.
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To understand the interaction between advances in computing resources and algorithmic innovations, we
introduce our compute-dependent vs. compute-independent framework, as well as our methodology for
estimating CEG.

1. Compute-Independent vs. Compute-Dependent Algorithmic Advances

We classify an algorithmic advance as compute-dependent or compute-independent by comparing the per-
formance of the new algorithm (e.g., training procedure or architectural innovation) to its predecessor (i.e.,
status quo) algorithm at low and high levels of compute. If an algorithm yields similar performance gains
over a previous algorithm at both low and high levels of compute, we interpret it as a compute-independent
advance. Alternatively, if an algorithm provides small benefits (or worsens performance) at low compute,
but gives large benefits at high compute, we classify it as a compute-dependent advance. Our framework
can be summarized using the schema in Table I.

TABLE I. Schematic for understanding compute-independent (I) and compute-dependent (D) algorithmic advances.

Status Quo Algorithm New Algorithm (I) New Algorithm (D)
Low Compute Slow Faster Slow
High Compute Slow Faster Very Fast

We note that these two categories naturally separate algorithms into those that require low levels and
high levels of compute for increased performance but do not include algorithms whose consequence (rather
than prerequisite) is usage of high compute. We thus propose a a third “compute-unlocking” category of
algorithms which typically both depend on and enable scaling, such as parallelization frameworks19,20 or
mixed-precision training21. These types of algorithms do not generally provide a compute-equivalent gain;
instead, their primary benefit is to use compute more effectively and enable scaling. As such, they are less
relevant to our thesis, and we accordingly do not discuss them here. Furthermore, we have limited our scope
to only algorithms that work during training time, rather than those that augment LLM capabilities at
inference time (see Section IV for more discussion of how these may fit into our analysis).

2. Compute-Equivalent Gain

The concept of compute-equivalent gain (CEG) was introduced by Davidson et al. [22] as measuring how
much additional training compute would have been needed to improve benchmark performance by as much
as the post-training enhancement. Concretely, we first estimate compute cost C (in terms of floating point
operations, FLOPs) as

C ∝ Active Parameters Per Step× Training Steps, (1)

and, given the compute cost of a baseline model (Cb) and of a equally performant but more efficient model
(Ce), we calculate the CEG as

CEG =
Cb

Ce
. (2)
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C. Compute-Dependent Algorithms

1. Transformer

The single most influential algorithmic advancement in the last decade is undoubtedly the transformer
architecture.23 In fact, some estimates2 have suggested that the transformer architecture itself accounts for
nearly 20% of language modeling improvements since 2015.

The primary mechanism in the transformer is a multi-head self-attention layer. Self-attention allows the
transformer model to draw global dependencies between input and output by tracking how each input token
affects each of the others (or all previous tokens in causal self-attention) in a constant number of sequential
operations. As a result, the time and space complexity of self-attention scale as O(n2) where n is the number
of tokens. Reducing or circumventing this quadratic scaling has therefore been a major focal point of many
other algorithms we analyze. Previous state-of-the-art models, such as recurrent neural networks, require
O(n) sequential operations to process a length-n input, whereas the transformer architecture can process all
tokens simultaneously, enabling greater throughput during training.

While the self-attention ultimately underlies the transformer’s capabilities, it requires a large amount of
memory to store all the model parameters. Transformers often include multiple encoder or decoder blocks
(or both), with each block containing at least a self-attention layer and feed-forward layer. While it is
possible that the transformer architecture could have been invented before sufficient compute was available
to train models, its benefits accrued only once hardware had advanced sufficiently to hold the models in
memory and efficiently perform the self-attention calculations. Previous research has also found that other
architectures, like long-short term memory (LSTM), are more efficient than transformers at smaller scales,
but the transformer improves as the number of parameters and amount of data increases.24 These facts
together show that the transformer is compute-dependent: its advantages emerge only in much larger models
requiring higher levels of compute.

We estimate the CEG of the transformer directly from Vaswani et al. [23], which showed that the transformer
performed as well as or better than all other state-of-the-art models on English-to-French and English-to-
German translation tasks. The most performant English-to-French non-transformer model required 7.7×1019

FLOPs to train, compared to the base transformer’s 3.3 × 1018, indicating that the transformer offers at
least a 10× CEG. Further, the big transformer with 2.3× 1019 FLOPs achieved similar performance to the
ConvS2S Ensemble at 1.2 × 1021 FLOPs. This would put the transformer’s CEG upwards of 50×, which
is not unreasonable given previous findings about the transformer’s influence relative to other algorithmic
improvements.2

2. Sparse Attention

As previously discussed, one of the main drawbacks of the traditional self-attention mechanism is its quadratic
complexity with respect to sequence length caused by each token interacting with every other token. While
this issue is not of major concern with shorter sequences, it becomes a very pertinent issue once processing
long sequences becomes the focus. To combat this problem, sparse attention25 was introduced to limit the
size of the attention window, thereby reducing the mechanism’s complexity.

More specifically, given a set S = S1, S2, . . . , Sn where each Si ∈ S is the set of indices of inputs that attend
to the ith input, traditional self-attention (specifically causal/masked self-attention) defines Si = {j : j ≤ i};
every previous token affects the next token. Sparse Attention, rather, is only interested in a subset of the
indices Si ⊂ {j : j ≤ i} where |Si| scales with

√
n. To address the possibility of disconnectivity within this

attention mechanism, i.e., some tokens not being attended to, each of the p attention heads is set such that
for every j ≤ i token pair, i can attend to j in p+ 1 steps. That is, given a sequence (j, a, b, c, . . . , i), head
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1 will ensure j attends to a, head 2 will ensure a attends to b, and so on. This guarantees that at least
indirectly, every token can still affect future tokens. Thus, the attention mechanism itself remains intact
while having an improved O(n

√
n) time.

Sparse attention demonstrated equivalent or improved performance over standard transformers on various
long-sequence modeling tasks, ranging from image generation to NLP tasks (see Section 7 in Child et al. [25]).
While the compute scale used at the time was lower than what might be used today, we argue that sparse
attention’s reduced capacity would lead to a degradation in model performance at low compute levels. At
these levels, the sequences we use likely are not long enough to truly demonstrate the runtime benefits of
sparse attention. Leaning toward more sparsity to combat this means there may not be enough information
captured in the smaller sequences, leading to worse performance. On the other hand, if we choose to keep
the mechanism more “intact” by favoring less sparsity, we likely will not see much improvement in efficiency.
These suggestions are generally borne out by our empirical tests (see Section III B) We therefore classify
sparse attention as a compute-dependent advancement.

When trained on the EnWiki8 dataset, the sparse transformer achieved 0.99 bits per dimension, matching
that of the state-of-the-art model trained with more than double the number of parameters25 at half the
time-per-iteration (1.33 vs. 0.55). With half the active parameters per step and roughly half the training
steps, the sparse transformer’s CEG is thus 2 · 1.33

0.55 = 4.84× of contemporaneous state-of-the-art models.

3. Mixture of Experts

The mixture of experts (MoE) architecture subsumes several variants and algorithmic developments that
have been introduced over the last decade, most prominently in the form of the MoE LSTM26 and Switch
Transformer,27 which we briefly review here. We also discuss the DeepSeekMoE architecture17 which is
employed in DeepSeek-V3 (see Section IIA). In essence, the MoE architecture increases the effective number
of parameters in an architecture without significantly increasing compute by using a group of individual
“expert” models which are combined via a “routing” network. Each expert is activated during a forward
pass of the model, depending on the routing network’s choice. Because only one (or a few) experts are
activated on a given token—even though the architecture typically contains many experts, on the order
of dozens to hundreds—the total number of parameters (and hence capabilities) of the model can be very
large without increasing the runtime on a given token. Although the general idea dates back to the 1990s28,
practical implementations required innovations in loss functions and computing infrastructure (due to the
increased communication requirements). These algorithmic innovations have been critical to the MoE’s
success in modern LLMs such as DeepSeek-v3.

The LSTM-based MoE model in Shazeer et al. [26] employed the expert and routing networks immediately
after an LSTM layer, and this scheme was later transferred to transformer architectures where the feedforward
network after each self-attention layer is replaced by a MoE layer (see e.g. Figure 2 in Fedus et al. [27]). The
number of experts activated may be small or even just one,27 reducing the computation at each step to
effectively the cost of a single expert network. The routing network is also encouraged to balance the tokens
across the experts using an auxiliary loss function during training, although this has recently been suggested
as unnecessary.17,18

The MoE architecture increases the effective parameter count of the model without a concomitant increase
in compute (FLOPs). In principle, this means that one can scale to larger models with equivalent (or lower)
compute requirements, while improving parameter efficiency through specialization. For example, in Fedus
et al. [27] the authors, holding FLOPs per token constant, compare a smaller transformer model (T5) with
200M parameters against a Switch Transformer with 7B parameters (a 35× difference), finding that the
Switch Transformer significantly outperforms the base transformer model on language modeling tasks. We
note that even the FLOPs/token in the smallest experiments are approximately 3 orders of magnitude higher
than the experiments in the original LSTM version (Figure 2 in Shazeer et al. [26]), which observes similar
benefits for the MoE layer.
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These findings are generally confirmed by DeepSeek’s experiments with their DeepSeekMoE architecture,17

where they successfully train a MoE model at a 2B parameter scale up to 671B parameters (37B activated)
with the DeepSeek-V3 model.12 At the small scale, they find that the 2B parameter model achieves com-
parable performance with GShard 2.9B,29 which has 1.5× the expert parameters and computation, while
the 16B-parameter model achieves comparable performance with LLaMA2 7B30 while requiring only 40%
of the compute. Together, these findings imply that the MoE architecture produces the majority of its
performance gains in large models where one can take advantage of parallelization. At the same time, there
is evidence that MoE algorithms are not extremely compute-dependent, given that early practical versions
were discovered26 prior to the massive scaling increases enabled by transformers. Overall, we classify these
developments as compute-dependent, as MoE-based models display their largest CEG in the scales over 1023

FLOPs, and as a result are primarily deployed as alternatives to the largest dense transformer models (e.g.
DeepSeek-v3 vs. Claude 3.5 or GPT-4o).

Based on the 2.788M H800 hours required to train DeepSeek-V312 compared to the 30.84M H100 hours to
train LLaMa 3.1-405B-Instruct,13,14 given their similar performance we can estimate the CEG as roughly
11×. There are a number of confounding factors, such as DeepSeek’s slightly superior benchmark metrics
and worse GPUs along with the model’s other algorithmic advances in training. Similarly, a FLOP-matched
Switch Transformer offers a roughly 7× training speedup (and thus CEG) over a base transformer model27,
falling reasonably close to DeepSeek-V3’s CEG and likely representing a realistic estimate for the CEG by
MoE architectures. It should be noted, however, that the MoE architecture does not fit cleanly into our CEG
framework. Since the total number of parameters is large, but only a subset is active per step, the compute
required for a single forward pass is relatively low, while the compute needed to store and manage the entire
model remains high. This distinction serves as another reason for our classification of this advancement as
compute-dependent.

4. Multi-Query Attention

To reduce memory usage in the attention mechanism, multi-query attention (MQA) modifies standard multi-
head attention by having all query heads share the same keys and values.31 This reduces the KV cache size
by a factor of the number of attention heads while maintaining multiple query heads, resulting in comparable
model quality to standard multi-head attention. For example, on the WMT14 English-to-German translation
task, MQA achieved a BLEU score of 28.5, nearly matching the baseline score of 28.4, with only a slight
increase in perplexity (1.439 vs. 1.424).31

At the time of its introduction in 2019, MQA was tested primarily on small models where memory constraints
were not a major concern. As a result, its benefits were not immediately apparent. However, as model sizes
grew, memory efficiency became increasingly important, making MQA a crucial optimization in modern
LLMs (including Falcon, PaLM, and StarCoder). We thus classify it as a compute-dependent advancement.
Its widespread adoption has been largely driven by the demands of scaling, which further reinforces its
classification as a compute-dependent technique.

Interestingly, while the training time with and without MQA remains comparable (13.0 µs vs. 13.2 µs per
token), it dramatically reduces the memory bandwidth requirements during inference. The encoder inference
time was reduced from 1.7 µs to 1.5 µs per token, while the decoder inference time was reduced from 46 µs
to 3.8 µs per token.31 This gives us a modest CEG estimate of 1.13× for encoder tasks but 12.1× for decoder
tasks. MQA is thus particularly valuable for inference-heavy workloads and less important for training itself.
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D. Compute-Independent Algorithms

1. Rotary Positional Embedding

The self-attention mechanism models interactions between tokens in a sequence without regard to their order,
a property known as permutational equivariance. As a result, the algorithm does not “know” whether a token
appears at the beginning or end of a sentence. However, since natural language is inherently sequential, this
issue is typically addressed using positional embeddings, which encode information about a tokens location
within a sequence.

In the original transformer architecture (Section IIC 1), positional embedding was implemented using pe-
riodic functions (sines and cosines) with geometrically spaced frequencies up to a fixed maximum sequence
length.23 While simple and efficient, this approach has two major limitations that led to the development of
rotary positional embedding (RoPE). First, absolute encoding represents a tokens position in isolation rather
than encoding its relative distance to other tokens, making it less effective for capturing relationships in long
sequences. Second, the use of a fixed maximum sequence length imposes constraints on how much text the
model can process effectively, leading to degradation in quality when modeling long-range dependencies.

To circumvent these issues, RoPE32 was introduced as a way to model relative sequence positions through ro-
tation matrices rather than additive embeddings. As the name suggests, the positional encoding is generated
by rotating the initial token embedding vectors depending on their sequence position and then computing
the relative distance by multiplying the two vectors together. Because of the mathematical properties of
rotation matrices, the inter-token dependency naturally decays as the sequence distances increase, matching
the modeling objectives. Moreover, RoPE can easily be implemented with sparse matrices, requiring no
increases in compute compared to an absolute encoding scheme.

RoPE presents a clear example of a compute-independent algorithmic advance, as the improvements can be
observed in all scales of transformer architectures. RoPE has been incorporated in many language models
after its original publication, and has been further extended to handle even longer sequence lengths (e.g.
LongRoPE33 or AliBi34). One can view it as essentially a step improvement in context length; that is, it
achieves the same performance for a much larger number of tokens, provides a greater ability to summarize
long texts.

We estimate RoPE’s compute-equivalent gain directly from benchmarks in the original paper. The RoFormer
paper trained BERT (110M base parameters35) and RoFormer (65M base parameters) over 100K training
steps. Both models exhibited comparable performance on downstream GLEU tasks. Consequently, we
estimate the computational cost for each model as CBERT = (110 × 106) · (1 × 105) = 1.1 × 1013 and

CRoFormer = (65× 106) · (1× 105) = 6.5× 1012. Thus, RoPE’s estimated CEG is 1.1×1013

6.5×1012 ≈ 1.7×.

2. FlashAttention

As previously discussed, the self-attention mechanism scales quadratically with the length of the sequence.
Such quadratic scaling can easily become prohibitive when handling long sequences required for complex
language processing tasks. FlashAttention36 is an algorithm aimed to improve the efficiency of the attention
mechanism by taking advantage of the physical memory layout on the GPUs used for training. In a modern
GPU, the computing speeds are significantly faster than the speeds at which data is transferred, meaning
that only a fraction of time is actively spent doing the attention calculation during a typical self-attention
calculation37. In FlashAttention, this difference in speed can be leveraged to compute the attention matrix
in chunks, rather than transferring it all at once to and from the slow (but large) GPU memory. The result
of these hardware-aware optimizations is approximately a 2–4× speedup compared to the default PyTorch
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implementation of attention and enables sequence lengths around 4 times longer than the original. Later
iterations of FlashAttention further develop hardware-based optimizations to increase the speed and long-
sequence capabilities.38,39 FlashAttention is now the primary algorithm used in state-of-the-art language
modeling due to its performance efficiency and their widespread use of attention mechanisms.

FlashAttention shows time and memory improvements at all sequence lengths tested (see Fig. 3 in Dao [38]).
This is also generally true for later generations, suggesting that the algorithmic innovation was largely
compute-independent. In this specific case, it appears that algorithmic optimization can significantly reduce
compute requirements without sacrificing model accuracy or capabilities. However, we identify two confound-
ing factors in our analysis. First, FlashAttention takes special advantage of the hardware layout found on
modern GPUs (specifically the multiple levels of memory between the fast SRAM and slow high bandwidth
memory), meaning that it is highly dependent on architectural constraints and, more generally, the ubiquity
of GPUs for AI training. The second factor, which arises primarily in comparing the performance of FlashAt-
tention 2 and FlashAttention 3, is slight differences in the implementation of the algorithms, most notably
the use of low-precision float point formats such as bfloat16 or FP8.40 These lower-precision formats have
become much more common for accelerating training and inference, making a direct comparison between
different FlashAttention variants challenging. In the end, however, the widespread use of FlashAttention
in almost all transformer architectures points to the algorithm being primarily untethered from compute
increases and therefore compute-independent.

As discussed above, FlashAttention’s hardware optimizations offer roughly a 2-4× speedup compared to
PyTorch’s attention. We take this as our estimate of the FlashAttention’s CEG.

3. Layer Normalization

Prior to layer normalization, batch normalization was the standard for training neural networks.41 Batch
normalization consists of computing the mean and variance of each feature within a mini-batch, then using
these statistics to normalize each input’s features. For natural-language processing (NLP) applications,
however, batch normalization can struggle since the mini-batch size is not always fixed, meaning that the
computed statistics may be inaccurate estimators. Despite this drawback, batch normalization provides a
significant reduction in the training time of neural networks that utilize the technique.

Layer normalization provides training speedups similar to batch normalization but in a more reliable manner
for NLP tasks. Rather than using the mean and variance of each minibatch to normalize, it uses the mean and
variance of the features within a single input.41 Layer normalization is therefore not prone to being influenced
by the batch size. Additionally, layer normalization empirically yields training speedups, especially when
given long sequences or small batch sizes.

Given that layer normalization demonstrated speedups on the much smaller neural networks used in 2016
and is still often used in models today (or is swapped out for similar normalization techniques, such as
RMSNorm42), this algorithmic advancement falls into the compute-independent category. This is further
supported by the fact that the speed-up provided by layer normalization was mathematically proven in Ba
et al. [41]; no advances in compute were needed to demonstrate the improvement this algorithm provides.

We estimate the CEG offered by layer normalization directly from the layer normalization paper, which
demonstrates the convergence of an LSTM with layer norm occurring 60% faster than without it41. Thus,
layer normalization’s CEG is approximately 1.67×.
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E. Results

We summarize our findings in Table II. We see clearly that numerous algorithmic advancements have provided
non-trivial increases in compute-equivalent gain, implying that if compute power were to be frozen tomorrow,
LLM progress would still continue. Furthermore, this is looking purely at algorithmic progress, ignoring,
e.g., the new paradigm in using compute at inference time via chain-of-thought, among other techniques. We
additionally observe that compute-dependent advances tend to provide greater compute-equivalent gain than
compute-independent advances, suggesting that compute plays a non-trivial role in furthering algorithmic
progress.

TABLE II. Summary of estimated CEG for reviewed algorithmic advancements.

Advancement CEG Dependent/Independent?
Transformer 10–50× Dependent
Sparse Attention 4.84× Dependent
MoE 7–11× Dependent

MQA
1× for training
1.13× for encoder tasks
12.1× for decoder tasks

Dependent

RoPE 1.7× Independent
FlashAttention 2–4× Independent
LayerNorm 1.67× Independent

III. EMPIRICAL INSIGHTS: EVALUATING ALGORITHMIC GAINS

When an algorithmic advancement improves performance at low compute, whether by enabling smaller
models to perform better or reducing the need for extensive training data, how should we expect those gains to
translate at large compute scales? Some improvements may scale linearly as model size increases, while others
might exhibit nonlinear effects, compounding in unexpected ways. This scaling behavior determines the way
each advancement’s CEG interacts with compute levels and thus its classification as compute-dependent or
compute-independent. In this section, we seek to validate our previous classification of algorithms into these
categories.

A. Experimental Details

In order to empirically verify our analysis in Section II, we conducted a series of experiments using small
models to measure the effects of different algorithmic improvements. The goal is to understand how these
effects extend when scaled to larger models: whether the gains persist, amplify, or plateau. Due to monetary
constraints, we were unable to run large-scale experiments; however, we found that the smaller-scale was
still large enough to validate our framework.

For these experiments, we chose to train a smaller-scale version of OpenAI’s GPT-2 model43 based on the
PyTorch implementation nanoGPT44. The hyperparameters for the architecture and training are listed
in Table IV. Due to limited computing resources and time constraints, we trained our model on the
OpenWebText45 dataset for a fixed number of iterations (50,000) rather than to convergence, which re-
quires approximately 600,000 iterations for the full-size nanoGPT model. We implemented each algorithm
using the native PyTorch libraries (LayerNorm, FlashAttention) or as closely to the original report as pos-
sible otherwise (MQA and RoPE). Given the small size of our model, we were unable to implement MoE,
so that particular algorithm is left out of our experimental results.
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For each experiment, we applied one of the algorithms and measured the model’s cross-entropy validation
loss after the set number of training iterations. We also record the GPU utilization (or MFU, model FLOP
utilization) to compute the total number of FLOPs used during training. We estimate two metrics: the
overall performance gain (as measured by the validation loss) after completing training (i.e., after 50,000
iterations), and the compute equivalent gain compared to the baseline model at 25,000 and 50,000 iterations.
Specifically, we identify the iteration at which a given algorithm achieves a validation loss equal or lower than
the baseline model’s loss at 25,000 or 50,000 iterations. We then estimate the (relative) total FLOP usage
by multiplying the number of training iterations required by the average MFU (assuming that the MFU
is approximately constant during training, which is generally true). Code to reproduce our experiments is
available at https://github.com/tedfoley/nanoGPT.

B. Results
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FIG. 1. Training and validation loss curves during GPT training experiments across different algorithmic enhance-
ments. Tthe cross-entropy loss was reported every 500 iterations. FA, FlashAttention; LN, LayerNorm.

We summarize our findings in Table III, with training and validation loss curves shown in Figure 1. At 50,000
iterations, both the training and validation losses are decreasing, indicating we have have not yet saturated
our model’s capacity. We find that compared to the baseline, the only algorithms which show significant CEG
at the low-compute scale of our experiment were those that we had categorized as compute-independent:
LayerNorm (2.24–2.35) RoPE (1.42–1.54), and FlashAttention (0.71–0.81). FlashAttention yields a CEG
gain less than one because the algorithm enables much higher GPU utilization compared to the baseline
(15.0% on average vs. 11.3%), making it appear to use more total FLOPs to achieve the same loss. However,
due to the increased GPU efficiency, the total training time is reduced by nearly 25%, dropping from 330
min to 250 min. Consequently, we believe FlashAttention still is a compute-independent algorithmic advance
since it does not sacrifice absolute performance compared with the baseline and increases efficiency despite
nominally requiring more FLOPs.

To achieve the highest possible CEG, we performed a final training experiment with a combination of of
FlashAttention, RoPE, and LayerNorm, which resulted in a CEG of 3.03–3.14. Naively multiplying the
CEG of each algorithm independently gives us an estimated CEG of 2.37–2.79, demonstrating that at least
for these three specific algorithms, each CEG is mostly independent from the others, but that there may
be small cooperative effects between them. The compute-dependent algorithm we tested, MQA, performed
comparably to the baseline with a CEG of 0.91.

https://github.com/tedfoley/nanoGPT
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Unfortunately, sparse attention was not included in the experiment due to significant implementation chal-
lenges. The native PyTorch implementation involved unnecessary computations that led to unreliable results,
and external implementations required custom CUDA kernels or a removal of other optimizations that made
this experiment feasible to begin with. Thus, due to the need for training efficiency, we were not able to
properly test sparse attention. A naive implementation, however, did result in a CEG of roughly 0.5 (in-
dicating a decrease in performance compared with the baseline), which we note would be consistent with
sparse attention being categorized as a compute-dependent algorithm.

TABLE III. Comparison of algorithmic enhancements with their compute-equivalent gains (CEG) and performance
metrics during GPT training experiments

Algorithm a
Train
Loss

Validation
Loss

Training
Time
(min)

Average
MFU (%)
b

Final per-
formance
gain

CEG at
25k steps

CEG at
50k steps

Baseline 3.49 3.49 330.01 11.3 – – –
LN 3.39 3.39 340.67 11.0 2.18 2.35 2.24
RoPE 3.44 3.44 355.34 10.5 1.32 1.42 1.54
FA 3.49 3.49 250.34 15.0 0.99 0.71 0.81
MQA 3.49 3.49 329.17 11.4 0.98 0.91 –c

LN + RoPE + FA 3.34 3.34 289.51 12.9 3.17 3.14 3.03

a FA, FlashAttention; LN, LayerNorm.
b MFU: Model FLOP utilization. Computed assuming a maximum bfloat16 FLOPs of 1,979 teraFLOPs on an NVIDIA H100
SXM GPU.
c MQA does not achieve a better validation loss than the baseline at 50k steps.

IV. DISCUSSION

Our case-by-case analysis of selected algorithms demonstrates that compute-independent algorithmic ad-
vances do exist, but the most impactful algorithmic advancements tend to be compute-dependent (Table II).
Moreover, these findings are generally confirmed by our empirical tests: the compute-dependent advances at
best did nothing and at worse slightly degraded our small-scale model’s performance, whereas the compute-
independent advances improved performance at all scales (Table III).

Our compute-dependent vs. compute-independent framework can serve as a useful framework for directing
future AI research. If, before testing, researchers hypothesize than an algorithmic advancement is compute-
independent, initial experiments could be run at smaller scales to confirm the advancement’s helpfulness. On
the other hand, if the advancement is hypothesized to be compute-dependent, researchers may be inclined to
start with larger-scale experiments, which would likely yield more relevant results. We therefore hope that
going forward, this framework can be used to speed up the empirical validation step of the research process.

There are several limitations to our analysis. First, we do not account for the role of datasets in AI ad-
vancements, which may be particularly relevant for cases when training on other LLM outputs has been
suggested (e.g., DeepSeek). This contrasts with prior work, such as Epoch AI’s dataset-equivalent gain
estimates2. Additionally, we do not consider inference-time improvements or reinforcement learning tech-
niques, such as chain-of-thought prompting46, reinforcement learning from human feedback47, or DeepSeek’s
group-relative policy optimization methods48, which may further impact LLM capabilities. Another key
limitation is our assumption that algorithmic advancements act independently; in reality, they often work
synergistically. Our computational study did not test every possible algorithmic combination, though the
superior performance of LayerNorm + RoPE + FlashAttention suggests the existence of cooperative effects
between algorithms. Similarly, our estimates rely on evaluating algorithms in isolation from state-of-the-art
models, whereas modern models integrate multiple advancements (e.g., LayerNorm, RoPE, and MQA, often
with modifications like RMSNorm or LongRoPE)1. Consequently, our estimates may underestimate the true
impact of algorithmic progress.
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It is unclear whether recent AI advancements are representative of long-term trends. Epoch AI’s research
indicates that much of the progress in frontier models has been driven by compute scaling,3,49 raising the
possibility that, as data and hardware availability plateau, future research will prioritize model compression,
distillation, or other efficiency-driven methods.50–53 Additionally, while this study limits its focus to language
modeling, our compute-dependent/independent framework could naturally be applied to analyze algorithmic
progress in other domains such as computer vision10 or biological sequence modeling54. Although the relative
role of compute scaling likely varies, we expect similar trends to hold across different AI subfields.

Finally, we hypothesize why some algorithmic advancements are compute-dependent while others are
compute-independent. Among the compute-dependent advancements we analyzed above, we observe that
each advancement directly affects the attention mechanism. For example, the transformer architecture in-
troduced the attention mechanism, and in MoE, the attention mechanism is “split” across multiple experts.
Conversely, compute-independent advances tend to operate independently of the attention mechanism.
(Even though its name suggests otherwise, FlashAttention primarily changes how the algorithm is imple-
mented in the hardware and does not change the mechanism itself.) Our findings therefore suggest that the
attention mechanism is the primary compute consumer (which falls in line with its O(n2) scaling), and that
improvements to the mechanism consequently yield the greatest compute-equivalent gains. This in turn
suggests that improving the attention mechanism should be a focus of further research.

A. Implications for Policymakers

Past compute-independent algorithmic advances mean that even at lower compute levels, models can be
improved through algorithmic innovation alone. Even if the total available compute were to suddenly freeze,
researchers could still improve models via compute-independent advances. Hardware controls, while clearly
impactful, are no silver bullet. Even if the strictest controls were enacted and enforced, this would not suffice
to guarantee continued U.S. AI dominance6. DeepSeek-V3 provides a clear example of such a phenomenon
(Section IIA). At the same time, because the majority of algorithmic progress appears to come from compute-
dependent algorithmic advancements, hardware controls may not be entirely futile. (We reiterate here the
DeepSeek’s CEO’s comments on the availability of compute) The biggest capability advances have come
from compute-dependent advances, and we see little reason to expect this to change.

To the extent that algorithmic advances that improve the performance of small models also improve the
performance of larger models, we also expect research and development to be easier. If results from experi-
ments on smaller models translate to larger models, it will take less compute, researcher hours, and time to
iterate, and it will be easier to run many experiments in parallel. If the bar for humans to run experiments
is lower, we might also expect the bar for AI agents to run experiments to be lower, and we thus expect AI
agents to be especially capable of finding these compute-independent advances.

Though the lower bar means that less-resourced researchers can find compute-independent advances, this also
means that better-resourced actors can find more. In this way, organizations which already have access to
lots of compute are counterintuitively better positioned to discover new compute-independent advances: they
have the resources to search more comprehensively across across the range of possible compute-independent
advances, and can likely automate that search more easily than competitors with less computation power and
with less-capable agents. Indeed, this approach sounds remarkably similar to the one described by Google’s
Chief Scientist Jeff Dean during his February 2025 appearance on the Dwarkesh Podcast:

I think one thing people should be aware of is that the improvements from generation to gen-
eration of these models often are partially driven by hardware and larger scale, but equally and
perhaps even more so driven by major algorithmic improvements and major changes in the model
architecture, the training data mix, and so on, that really makes the model better per FLOP that
is applied to the model. . . . Then I think if we have automated exploration of ideas, we’ll be able
to vet a lot more ideas and bring them into the actual production training for next generations
of these models.
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That’s going to be really helpful because that’s sort of what we’re currently doing with a lot
of brilliant machine learning researchers: looking at lots of ideas, winnowing ones that seem to
work well at small scale, seeing if they work well at medium scale, bringing them into larger
scale experiments, and then settling on adding a whole bunch of new and interesting things
to the final model recipe. If we can do that 100 times faster through those machine learning
researchers just gently steering a more automated search process, rather than hand-babysitting
lots of experiments themselves, that’s going to be really, really good.55

One key consequence of our findings for policymakers who are interested in the most-capable models, then,
is that it will be more difficult to define the frontier with pre-training compute alone. Record-breaking
quantities of pre-training compute remain sufficient for frontier capabilities, but are less necessary. In
addition to model distillation (not discussed here) which let smaller models achieve performance comparable
to larger models by training on their outputs, algorithmic improvements could allow models to increase
performance without crossing a FLOP threshold.

We are not aware of any meaningful way to address this gap—attempts to monitor or shape algorithmic
research are one option, but do not seem politically feasible, even if there did exist the regulatory capacity
to do that monitoring. Evaluations may be feasible for particular narrow capabilities,56 but also remain
outside the Overton window and are poor measures of general capabilities.

V. CONCLUSIONS

In this paper, we introduced a novel framework for classifying algorithmic advancements as either compute-
dependent or compute-independent, providing a clearer understanding of how LLM capabilities can progress
even under hardware constraints. Our empirical validation confirmed that compute-independent innova-
tions like Layer Normalization, RoPE, and FlashAttention yield meaningful performance gains (up to 3.5×
compute-equivalent gain) even in resource-constrained settings. On the other hand, the most impactful
advancements remain compute-dependent and often attention-focused, suggesting that export controls may
slow, but cannot fully prevent, AI progress. Our investigation focused on algorithmic improvements to
pretraining, and future work should address advancements in other places, for example, by estimating the
compute-equivalent gain from chain-of-thought prompting. Such estimates might give us a more holistic
view of the role non-architectural factors play in the increasing performance of frontier models.
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Appendix: Supplementary Tables

TABLE IV. Training hyperparameters for experiments compared with GPT-2

Hyperparameter Original (GPT-2) Ours
Model Architecture

Number of layers 12 8
Number of heads 12 8

Embedding dimension 768 512
Block size 1024 512
Dropout 0.0 0.2

Batch Size Configuration
Batch size 12 64

Gradient accumulation steps 40 8
Total effective batch size ∼491k tokens ∼262k tokens

Training Schedule
Maximum iterations 600k 50k
Warmup iterations 2000 1000

Learning rate decay iterations 600k 50k
Optimizer

Learning rate 6× 10−4 8× 10−4

Minimum learning rate 6× 10−5 8× 10−5

β1 0.9 0.9
β2 0.95 0.95

Gradient clipping value 1.0 1.0
Regularization

Weight decay 0.1 0.1
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